Estimating the Residual Tropospheric Delay for Airborne Differential Gps Positioning (a Summary)

نویسندگان

  • J. Paul Collins
  • Richard B. Langley
چکیده

When post-processing dual frequency carrier phase data, the residual tropospheric delay can easily be the largest remaining error source. This error can contribute a bias in height of several centimetres even if simultaneously recorded meteorological data are used. This is primarily due to the poor representation of the water vapour profile in the tropospheric delay models. In addition, a lack of real-time meteorological data would force the scaling of either surface values or standard atmosphere values; these are also unlikely to accurately represent the ambient atmosphere. To obtain the highest precision in kinematic GPS some advantage may be obtained by estimating this error source along with the position solution. The simple tests reported in this paper removed biases of several centimetres in height when estimating the residual tropospheric delay from GPS data recorded at an aircraft in flight. However, important limitations exist in the geometry of the satellite coverage which must be considered before the full reliability of the technique can be quantified. INTRODUCTION This paper provides a brief summary of our investigations into estimating the residual tropospheric propagation delay from GPS signals. This parameter is the remaining part of the tropospheric delay not predicted by empirical models. In post-processed dual frequency carrier phase data, it can easily be the largest remaining error source. Unlike most applications of the technique, we have used data recorded at an aircraft in flight. This idea was motivated by the fact that highly accurate aircraft positions are required for gravimetric, altimetric and photogrammetric surveying purposes. Increasingly, GPS is being used to provide the decimetre-level accuracy required for some of these techniques. This level of precision can be achieved using carrier phase observables, but we will show that unmodelled tropospheric effects could potentially contribute a bias of a similar magnitude. When processing GPS observations, a value for the tropospheric delay is predicted using empirical models which must be provided with meteorological values of the ambient

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating the Residual Tropospheric Delay for Airborne Differential GPS Positioning

In post-processing dual frequency GPS carrier phase data, the residual tropospheric delay can easily be the largest remaining error source. This error can contribute a bias in height of several centimetres even if simultaneously recorded meteorological data are used. This shortcoming is primarily due to the poor representation of the water vapour profile in the tropospheric delay models. In add...

متن کامل

Grid Residual Tropospheric Corrections for Improved Differential GPS Positioning Over the Victoria GPS Network (GPSnet)

Tropospheric delay is one of the major error sources in GPS positioning. The delay of radio signals caused by the troposphere can range from 2 m at the zenith to 20 m at lower elevation angles. In a wide area differential system, tropospheric delays are corrected locally by users using an empirical tropospheric model, with or without meteorological observations. This can easily result in residu...

متن کامل

Investigation of MODIS mission capability in tropospheric delay estimation for precise point positioning

Tropospheric delay is always considered as one of the factors limiting the accuracy of GPS. In this paper, the three-dimensional ray tracing technique is proposed to calculate the tropospheric delay. The ability of the MODIS mission to calculate the tropospheric delay is also examined. For this purpose, an area in central Europe was selected and a MODIS acquisition on 2008/08/01 was studied. In...

متن کامل

Mitigating Tropospheric Propagation Delay Errors in Precise Airborne GPS Navigation

The high spatial and temporal variability of the troposphere is well known, as is its effect − through propagation delays − on GPS positioning. This effect can be particularly problematical in airborne kinematic differential positioning where the altitude difference between reference station and aircraft is typically quite large. The use of zenith delay models and mapping functions at ground st...

متن کامل

Mitigating Residual Tropospheric Delay to Improve User’s Network-Based Positioning

Existing apriori tropospheric models are not sufficiently accurate to remove tropospheric delay from GPS observations. Remaining effects of residual tropospheric delay need to be estimated to ensure high accuracy and reliability of GPS positioning. Other researchers have shown that implementations of network-based positioning techniques can adequately model the residual tropospheric delay as we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997